Применительно к современным 64-битным модулям памяти это число означает количество наборов микросхем, разрядность каждого из которого составляет в сумме 64 бита(72 бита, если есть поддержка ECC, см. Поддержка ECC), подключенных к управляющей линии Chip Select (выбор микросхемы).

Объясняя очень грубо, двухранговый модуль — это два логических модуля, распаянных на одном физическом и пользующихся поочерёдно одним и тем же физическим каналом. Четырёхранговый — то же самое, но уже в четырёхкратном масштабе. Бывают даже восьмиранговые модули

Зачем и кому это нужно. Исключительно в серверах и тяжелых рабочих станциях, для достижения максимального объёма оперативной памяти при ограниченном количестве слотов. При этом суммарное количество этих самых rank на канал также ограничено (иногда ограничение зависит от скорости), поэтому, при прочих равных условиях, двухранговый модуль выгоднее четырёхрангового, поскольку создаёт меньшую нагрузку на чипсет.

Узнать этот параметр можно из документации на модуль памяти у производителя, например у Kingston чисто рангов легко вычислить по буквам одной из трёх букв в середине маркировки: S(Single — одногоранговая), D(Dual — двухранговая), Q (Quad — четырёхранговая).

Остальные важные понятия:

CL CAS Latency, CAS — это количество тактов от момента запроса данных до их считывания с модуля памяти. Одна из важнейших характеристик модуля памяти, определяющая ее быстродействие. Чем меньше значение CL, тем быстрее работает память. tRAS Activate to Precharge Delay — минимальное количество циклов между командой активации (RAS) и командой подзарядки (Precharge) или закрытия одного и того же банка памяти. tRCD RAS to CAS Delay — задержка между сигналами, определяющими адрес строки и адрес столбца. tRP Row Precharge Delay — параметр, определяющий время повторной выдачи (период накопления заряда, подзаряд) сигнала RAS, т.е. время, через которое контроллер памяти будет способен снова выдать сигнал инициализации адреса строки. Буферизованная (Registered) Наличие на модуле памяти специальных регистров (буфера), которые относительно быстро сохраняют поступившие данные и снижают нагрузку на систему синхронизации, освобождая контроллер памяти. Наличие буфера между контроллером и чипами памяти приводит к образованию дополнительной задержки в один такт при выполнении операций, т.е. более высокая надежность достигается за счет незначительного падения быстродействия. Модули памяти с регистрами имеют высокую стоимость и используются в основном в серверах. Следует иметь в виду, что буферизованная и небуферизованная память несовместимы, т.е. не могут одновременно использоваться в одной системе. Количество контактов (от 144 до 244 ) Количество контактных площадок, расположенных на модуле памяти. Количество контактов в слоте для оперативной памяти на материнской плате должно совпадать с количеством контактов на модуле. Следует также иметь в виду, что помимо одинакового количества контактов должны совпадать и «ключи» (специальные вырезы на модуле, препятствующие неправильной установке). Количество модулей в комплекте Количество модулей памяти, продающихся в наборе. Помимо одиночных планок часто встречаются комплекты по два, четыре, шесть, восемь модулей с одинаковыми характеристиками, подобранных для работы в паре (двухканальном режиме). Использование двухканального режима приводит к значительному увеличению пропускной способности, а, следовательно, к увеличению скорости работы приложений. Следует отметить, что даже два модуля с одинаковыми характеристиками одного производителя, приобретенные по отдельности, могут не работать в двухканальном режиме, поэтому, если ваша материнская плата поддерживает двухканальный режим работы памяти и для вас важна большая скорость работы игровых и графических приложений, следует обратить внимание именно на комплекты из нескольких модулей. Количество ранков Количество ранков модуля оперативной памяти. Ранк — область памяти, созданная несколькими или всеми чипами модуля памяти и имеющая ширину 64 бита (72 бита, если есть поддержка ECC, см. Поддержка ECC). В зависимости от конструкции модуль может содержать один, два или четыре ранка. Современные серверные материнские платы имеют ограничение на суммарное число ранков памяти, т.е., например, если максимально может быть установлено восемь ранков и поставлено четыре двухранковых модуля, то в свободные слоты уже нельзя установить дополнительные модули, т.к. это приведет к превышению лимита. По этой причине одноранковые модули имеют более высокую стоимость, чем двух- и четырехранковые. Количество чипов каждого модуля (от 1 до 72 ) Количество чипов на одном модуле памяти. Микросхемы могут располагаться как с одной, так и с обеих сторон платы модуля. Напряжение питания Напряжение, необходимое для питания модуля оперативной памяти. Каждый модуль рассчитан на определенное значение напряжения, поэтому при выборе следует убедиться, что ваша материнская плата поддерживает необходимое напряжение. Низкопрофильная (Low Profile) Модуль памяти, имеющий уменьшенную высоту по сравнению со стандартным размером, может быть установлен в серверных корпусах небольшой высоты. Объем одного модуля (от 0.03125 до 32.0 Гб) Объем памяти одного модуля.
Суммарный объем памяти системы рассчитывается путем сложения объемов памяти установленных модулей. Для работы в интернете и офисных программах достаточно 2 Гб. Для комфортной работы графических редакторов и современных игр необходимо минимум 4 Гб оперативной памяти. Поддержка ECC Поддержка Error Checking and Correction — алгоритма, позволяющего не только выявлять, но и исправлять случайные ошибки (не более одного бита в байте), возникающие в процессе передачи данных. Технологию ECC поддерживают некоторые материнские платы для рабочих станций и практически все серверные. Модули памяти с ECC имеют более высокую стоимость, чем не поддерживающие этот алгоритм. Пропускная способность Пропускная способность модуля памяти — количество передаваемой или получаемой информации за одну секунду. Значение данного параметра напрямую зависит от тактовой частоты памяти и рассчитывается умножением тактовой частоты на ширину шины. Чем выше пропускная способность, тем быстрее работает память и тем выше стоимость модуля (при совпадении остальных характеристик). Радиатор Наличие специальных металлических пластин, закрепленных на микросхемах памяти для улучшения теплоотдачи. Как правило, радиаторы устанавливают на модули памяти, рассчитанные на работу при высокой частоте. Совместимость Модели ПК или ноутбуков, для которых предназначен модуль памяти. Помимо модулей широкого применения некоторые производители выпускают память для определенных моделей компьютеров. Тактовая частота Максимальная частота системного генератора, по которой синхронизируются процессы приема и передачи данных. Для памяти типа DDR, DDR2 и DDR3 указывается удвоенное значение тактовой частоты, т.к. за один такт производится две операции с данными. Чем выше тактовая частота, тем больше операций совершается в единицу времени, что позволяет более стабильно и быстро работать компьютерным играм и другим приложениям. При прочих одинаковых характеристиках память с более высокой тактовой частотой имеет более высокую стоимость. Тип Тип оперативной памяти. Тип определяет внутреннюю структуру и основные характеристики памяти. На сегодняшний день существует пять основных типов оперативной памяти: SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM, RIMM.
SDRAM (Synchronous Dynamic Random Access Memory) — синхронная динамическая память со случайным доступом. Преимуществом, по сравнению с памятью предыдущих поколений, является наличие синхронизации с системным генератором, что позволяет контроллеру памяти точно знать время готовности данных, благодаря чему временные задержки в процессе циклов ожидания уменьшаются, т.к. данные могут быть доступны во время каждого такта таймера. Ранее широко использовалась в компьютерах, но сейчас практически полностью вытеснена DDR, DDR2 и DDR3.
DDR SDRAM (Double Data Rate SDRAM) — синхронная динамическая память со случайным доступом и удвоенной скоростью передачи данных. Основным преимуществом DDR SDRAM перед SDRAM является то, что за один такт системного генератора может осуществляться две операции с данными, что приводит к увеличению вдвое пиковой пропускной способности при работе на той же частоте.
DDR2 SDRAM — поколение памяти, следующее за DDR. Принцип функционирования аналогичен использующемуся в DDR. Отличие состоит в возможности выборки 4-х бит данных за один такт (для DDR осуществляется 2-х битная выборка), а также в более низком энергопотреблении модулей памяти, меньшем тепловыделении и увеличении рабочей частоты.
DDR3 SDRAM — следующее поколение после DDR2 SDRAM, она использует ту же технологию «удвоения частоты». Основные отличия от DDR2 — способность работать на более высокой частоте, и меньшее энергопотребление.
В модулях DDR3 используются «ключи» (ориентирующие прорези), отличающиеся от «ключей» DDR2, что делает их несовместимыми со старыми слотами.
DDR3L и LPDDR3 — стандарты памяти DDR3 с пониженным энергопотреблением. Напряжение питания у DDR3L снижено до 1.35 В. Напряжение LPDDR3 — 1.2 В. Для сравнения, у «обычных» модулей DDR3 напряжение питания составляет 1.5 В. RIMM (RDRAM, Rambus DRAM) — синхронная динамическая память, разработанная компанией Rambus. Основными отличиями от DDR-памяти являются увеличение тактовой частоты за счет уменьшения разрядности шины и одновременная передача номера строки и столбца ячейки при обращении к памяти. При чуть большей производительности RDRAM была существенно дороже DDR, что привело к практически полному вытеснению этого типа памяти с рынка.
При выборе типа памяти в первую очередь следует ориентироваться на возможности вашей материнской платы — совместимость с различными модулями памяти. Упаковка чипов Тип расположения чипов на модуле памяти. Существуют модули с двусторонней и односторонней упаковкой. При расположении микросхем с двух сторон модули имеют большую толщину и физически не могут быть установлены в некоторые системы. Форм-фактор Форм-фактор модуля оперативной памяти. Форм-фактор — это стандарт, определяющий размеры модуля памяти, а также количество и расположение контактов. Существует несколько физически несовместимых форм-факторов памяти: SIMM, DIMM, FB-DIMM, SODIMM, MicroDIMM, RIMM.
SIMM (Single in Line Memory Module) — на модулях памяти форм-фактора SIMM обычно располагаются 30 или 72 контакта, при этом каждый контакт имеет выход на обе стороны платы памяти.
DIMM (Dual in Line Memory Module) — модули памяти форм-фактора DIMM, как правило, имеют 168, 184, 200 или 240 независимых контактных площадок, которые расположены по обе стороны платы памяти.
Модули памяти стандарта FB-DIMM предназначены для использования в серверах. Механически они аналогичны модулям памяти DIMM 240-pin, но абсолютно несовместимы с обычными небуферизованными модулями памяти DDR2 DIMM и Registered DDR2 DIMM.
SODIMM (Small Outline Dual In-Line Memory Module) — более компактный вариант DIMM, использующийся чаще всего в ноутбуках и Tablet PC. 144-контактные и 200-контактные модули наиболее популярные SODIMM, но также встречаются 72 и 168-контактные.
MicroDIMM (Micro Dual In-Line Memory Module) — еще один вариант DIMM, часто устанавливаемый в субноутбуки. По размерам меньше, чем SODIMM и имеет 60 контактных площадок. MicroDIMM доступны в следующих вариантах: 144-контактная SDRAM, 172-контактная DDR и 214-контактная DDR2.
RIMM — форм-фактор для всех модулей памяти типа RIMM (RDRAM), имеет 184, 168 или 242 контакта.
Форм-фактор модуля оперативной памяти должен совпадать с форм-фактором, поддерживаемым материнской платой вашего компьютера.

Oдно ранговая и двух ранговая оперативная память как определить ?

По простому определить.. заходишь на сайт Оперативки и смотришь.. Примерно вот так. http://www.gskill.com/en/compare

Multi-Channel Kit — Многоканальный комплект
Dual Channel Kit — Двухканальный комплект

Это совсем не значит, что чипы памяти с двух сторон, или двухсторонняя — двухранковая,
односторонняя — одноранковая.
По внешнему виду определить не возможно. Только документация производителя. Инфо из НИКСА:
Применительно к современным 64-битным модулям памяти это число означает количество наборов микросхем, разрядность каждого из которого составляет в сумме 64 бита, подключенных к управляющей линии Chip Select (выбор микросхемы).

Объясняя очень грубо, двухранговый модуль — это два логических модуля, распаянных на одном физическом и пользующихся поочерёдно одним и тем же физическим каналом. Четырёхранговый — то же самое, но уже в четырёхкратном масштабе. Бывают даже восьмиранговые модули.

Зачем и кому это нужно. Исключительно в серверах и тяжелых рабочих станциях, для достижения максимального объёма оперативной памяти при ограниченном количестве слотов. При этом суммарное количество этих самых rank на канал также ограничено (иногда ограничение зависит от скорости), поэтому, при прочих равных условиях, двухранговый модуль выгоднее четырёхрангового, поскольку создаёт меньшую нагрузку на чипсет.

Узнать этот параметр можно из документации на модуль памяти у производителя, например у Kingston число рангов легко вычислить по буквам одной из трёх букв в середине маркировки: S (Single — одноранговая), D (Dual — двухранговая), Q (Quad — четырёхранговая).

Наглядное представление использования управляющей линии односторонними (single-sided) и двусторонними (double-sided) модулями

Ранг зачастую путают со стороной распайки чипов на печатной плате. Если чипы расположены с одной стороны — значит память одноранговая, а если с двух сторон — значит двухранговая. В действительности же ранг не имеет отношения к стороне распайки чипов.

Итак, рангом называется область памяти, образованная определенным количеством чипов с 64-битной шиной. К примеру, если плата содержит набор из восьми 8-битных чипов, в общей сложности получается 64 бита, то есть один ранг (правильней говорить ранк, так как на английском пишется «rank»). Если плата содержит шестнадцать восьмибитных чипов, то она, соответственно, двухранговая. Грубо говоря, двухранговый модуль представляет собой два логических модуля, которые распаянны на одном физическом. При этом они поочередно используют один и тот же физический канал. Оперативная память может быть не только двухранговой, но и четырехранговой и даже восьмиранговой.

Узнаем какая оперативная память установлена на компьютере.

Некоторые пользователи задаются вопросом о том, как узнать сколько оперативной памяти стоит на компьютере для того, чтобы провести апгрейд своего ПК: увеличить общий объем памяти. Сначала необходимо узнать какая оперативная память стоит на устройстве, чтобы иметь представление о характеристиках RAM (оперативной памяти) компьютера.

Оперативная память (RAM, Random Access Memory) — важный компонент аппаратного обеспечения компьютера, влияющий на производительность устройства. Для комфортной работы, компьютере должен иметь достаточный объем оперативной памяти. Если оперативной памяти не хватает на ПК, памяти нужно добавить или заменить.

Для выполнения модернизации аппаратной части компьютера, в частности увеличения размера оперативной памяти, потребуется выяснить общие характеристики RAM, установленной на вашем устройстве. «>Необходимо узнать следующие параметры: какой объем оперативной памяти, сколько слотов оперативной памяти имеется, какая частота оперативной памяти и некоторые другие технические характеристики (тайминги и т. д.).

Сначала нужно узнать сколько всего оперативной памяти имеется на компьютере в данный момент времени. От этой информации зависят остальные действия по выбору памяти.

Часто пользователи добавляют дополнительные планки (модули) памяти, если есть такая возможность, для увеличения объема RAM. Поэтому предварительно нужно узнать количество слотов оперативной памяти на компьютере, есть ли свободные слоты (разъемы, гнезда).

В свободные слоты можно вставить дополнительные модули памяти. В противном случае, придется менять планки памяти меньшего объема на модули памяти большего объема.

Например, если на ПК установлены две планки памяти по 2 ГБ, работающие в двухканальном режиме, а пользователь хочет увеличить общий объем оперативной памяти с 4 ГБ до 8 ГБ, то имеет большое значение наличие свободных гнезд (разъемов) для установки RAM модулей.

Если на компьютере нет свободных слотов, то пользователю придется заменить установленные модули памяти на две планки по 4 ГБ, которые будут работать в двухканальном режиме или на один модуль в 8 ГБ, работающий в одноканальном режиме. Желательно использовать память в двухканальном режиме, это более производительный способ работы.

В этом руководстве находятся инструкции: как узнать сколько оперативной памяти на компьютере, а также, как узнать какая оперативная память стоит на компьютере. Получить общие сведения об объеме памяти можно с помощью средств операционной системы, а более детальные данные о технических характеристиках модулей памяти, мы узнаем с помощью стороннего программного обеспечения.

Владельцы ноутбуков могут узнать основные характеристики оперативной памяти на официальном сайте производителя, ориентируясь по описанию модели устройства (ноутбука), если такая информация имеется на веб-сайте. . Есть возможность узнать объем оперативной памяти в BIOS (UEFI).

Как узнать сколько оперативной памяти на компьютере при помощи msinfo32

Пользователь может быстро получить данные об объеме оперативной памяти в операционных системах Windows 10, Windows 8.1, Windows 8, Windows 7, с помощью встроенного системного средства «msinfo32» («Сведения о системе»).

Выполните следующие действия:

  1. Войдите в меню «Пуск».
  2. В списке программ найдите папку «Средства администрирования Windows» (в Windows 7 — «Служебные»).
  3. Запустите утилиту «Сведения о системе».
  4. В окне «Сведения о системе», в пункте «Установленная оперативная память» вы увидите общий объем памяти вашего компьютера.

Как узнать сколько памяти на ноутбуке или стационарном ПК в командной строке

Для получения сведений можно воспользоваться альтернативным способом: выполнить команду «systeminfo» в командной строке Windows.

  1. Запустите командную строку от имени администратора.
  2. В окне интерпретатора командной строки введите команду «systeminfo» (без кавычек), а затем нажмите на клавишу «Enter».
  3. В окне командной строки вы увидите информацию об оперативной памяти этого компьютера.

В пункте «Полный объем физической памяти» указан размер оперативной памяти, имеющийся на данном компьютере.

Узнаем какой размер оперативной памяти в Windows PowerShell

В Windows PowerShell можно получить данные о памяти ПК, выполнив аналогичную команду.

  1. Запустите Windows PowerShell от имени администратора.
  2. Выполните команду «systeminfo» (без кавычек).
  3. Ознакомьтесь с информацией об оперативной памяти этого устройства.

Как узнать сколько памяти Windows 10

В операционной системе Windows 10 можно узнать размер памяти и количество задействованных слотов без использования сторонних программ.

Для получения сведений о памяти RAM, выполните следующее:

  1. Щелкните правой кнопкой мыши по «Панели задач».
  2. В контекстном меню выберите «Диспетчер задач».
  3. В окне «Диспетчер задач» откройте вкладку «Производительность», выделите опцию «Память».

Здесь находятся сведения об оперативной памяти: общий объем (у меня — 8,0 ГБ), тип (в моем случае — DDR3), а также другие характеристики, в частности, использование количества гнезд (на моем компьютере — 2 из 4).

Зная эти характеристики, я могу дополнительно добавить еще два модуля памяти на свой компьютер.

Как узнать какая оперативная память стоит на ПК в CPU-Z

С помощью бесплатной программы CPU-Z можно получить данные об RAM памяти компьютера. Программа CPU-Z работает на английском языке.

Приложение показывает характеристики центрального процессора, материнской платы, оперативной памяти, видеокарты или параметры встроенной графики.

  1. Запустите программу CPU-Z на компьютере.
  2. В окне «CPU-Z» откройте вкладку «Memory».

Здесь отображены основные сведения об оперативной памяти:

  • Type — тип памяти: DDR, DDR2, DDR3, DDR
  • Size — размер памяти в гигабайтах.
  • Channel — режим работы памяти: Dual — двухканальный, Single — одноканальный.
  • NB Frequency — частота контроллера памяти.
  • Timing — тайминги памяти, в пункте «DRAM Frequency» указана актуальная частота памяти.

Во вкладке «SPD» находится информация о характеристиках модулей оперативной памяти, находящихся в отдельных слотах. Необходимо выбрать слот для получения нужных данных. Количество слотов соответствует количеству гнезд на материнской плате компьютера, пустые разъемы не будут отображать информацию.

Здесь находятся различные сведения: тип памяти, производитель, номер модели, объем памяти, время выпуска изделия, тип использования, таблица таймингов, напряжение в вольтах.

Как узнать какая оперативная память на компьютере в Speccy

Бесплатная программа Speccy предоставляет данные об аппаратном обеспечении компьютера. Приложение работает на русском языке.

Выполните следующие шаги:

  1. Запустите программу Speccy.
  2. В окне приложения нажмите на раздел «Оперативная память».
  3. В левой части окна программы отобразится информация об оперативной памяти компьютера: тип, объем, количество каналов, частота DRAM, другие характеристики.

Для получения данных о каждом модуле памяти, в разделе «SPD» нажмите на соответствующий разъем. Здесь собраны сведения о модуле памяти: тип, объем, изготовитель, пропускная способность, номер компонента, неделя и год выпуска, информация о таймингах.

Как определить какая оперативная память на ПК в AIDA64

Мощная программа AIDA64 (платная) предоставляет подробные сведения об аппаратной составляющей компьютера. Программа AIDA64 поддерживает русский язык интерфейса.

Пройдите следующие шаги:

  1. Запустите AIDA64 на компьютере.
  2. В во вкладке «Меню», в разделе «Системная плата» откройте раздел «Память».

В этом разделе отображаются основные сведения об оперативной памяти вашего компьютера.

Для получения информации о характеристиках отдельных модулей памяти, войдите в раздел «SPD».

После выделения модуля памяти, в окне программы отобразятся всевозможные сведения: имя модуля, серийный номер, дата выпуска, размер модуля, имя модуля, тип памяти, скорость памяти, ширина шины модуля (разрядность), напряжение, метод обнаружения ошибок, частота регенерации, производитель DRAM, тайминги памяти, функции модуля памяти.

Выводы статьи

В случае необходимости, пользователь может поменять модули памяти на своем компьютере, или увеличить объем оперативной памяти, добавлением новых планок памяти RAM. Предварительно необходимо узнать, сколько памяти сейчас имеется на компьютере, и какая именно оперативная память установлена в данный момент времени на ПК, чтобы подобрать подходящие модули оперативной памяти.

Универсальный способ разгона ОЗУ без калькуляторов и расчетов

Предупреждение 2: Не забывайте про опасность чрезмерного повышения напряжения, уровень рабочего напряжения индивидуален для каждого модуля ОЗУ, некоторые модули ОЗУ не терпят повышение напряжения выше номинального, и повышение напряжения на такие модули памяти может плохо сказаться на стабильности.

реклама

Предупреждение 5: Предыдущее предупреждение потерялось, оно не хотело брать ответственность за свои действия.

реклама

реклама

Вот и закончились предупреждения, время начать сначала, а именно с момента когда я собственно и пришел к универсальному методу разгона ОЗУ.

Данную предысторию можно пропустить при желании.

В далеком 2016 году у меня появился один интересный модуль, имя его: GeIL 16GB GP416GB2400C16SC (далее сокращенно GEIL), так же была еще Crucial 8GB CT8G4DFD8213, в те времена у меня была система Z170+6700K и опыта в разгоне DDR4 особого не было, мои результаты разгона были 2600 МГц для GEIL и 3100 МГц для Crucial.

реклама

После в 2017 году я перешел на B350+R5 1600 BOX, на первых биосах GEIL отказалась вообще работать, в то время как Crucial легко и просто взяла те же «3100 МГц» (3066 МГц) как и в паре с 6700K, после я прошил последний биос, который был на тот момент, и GEIL без проблем заработала, взяв по частоте 2666 МГц.

Уже в начале 2018 года я смог выжать из GEIL — 2933 МГц, благодаря настройке ODT, для GEIL требовалось ODT на уровне 80 Ом.

В том же 2018 году я перешел на 2600X и научился разгонять память по своему, калькуляторы вообще никак не могли помочь с разгоном GEIL, они всегда давали нерабочие параметры, с которыми GEIL не могла работать, советы других людей тоже ничем не помогали в разгоне таймингов (частотный потолок я ведь уже нашел).

Сложность разгона GEIL заключалась в том, что эта память имела 8 двухслойных чипов общим объемом 16GB, и любое ручное отклонение по таймингам от того, что контроллер подобрал на автомате, приводило обычно к нестабильности или вовсе невозможности запустить систему.

Я обратил внимание на то, что система в автоматическом режиме на разных частотах устанавливает разные вторичные тайминги, и подумал: Почему бы не использовать тайминги от более низкой частоты на более высокой частоте? И мне это удалось.

После я предлагал друзьям и знакомым свой метод разгона памяти попробовать, в целом результаты положительные, если все правильно сделать, особенно если в системе установлена память, которую никто не обозревает, непонятно что за она, и чего ждать от нее (таких комплектующих, увы, большинство на рынке, по которым найти информацию крайне тяжело, либо невозможно по причине «скрытности» производителей некоторых).

Теперь можно перейти к принципу разгона:

Всего 5 этапов, 4 из них обязательны.

1) Поиск максимальной стабильной частоты ОЗУ.

— На данном этапе необходимо подобрать рабочее напряжение, найти максимальную частоту, при которой стабильно работает, ODT установить подходящее.

-RTT сопротивления можно проигнорировать и оставить на авто, мы ведь не собираемся максимум выжимать из памяти, потратив много времени.

— Тайминги на Авто, при необходимости поднять CL выше 16, бывает такое, что система не поднимает сама CL выше 16.

— Этот этап нужен просто для экономии времени в будущем.

2) Откат частоты ОЗУ от максимальной стабильной на 3-4 множителя.

— ODT и напряжение уже установлены, частота максимальная стабильная найдена, допустим, это будет 2933 МГц при 1.35в и 80 Ом ODT.

— Откат делаем, например, до частоты в 2666 МГц при 1.35в и 80 Ом ODT.

— Если разница частоты слишком большая, например, максимальная стабильная 3333 МГц, а откат нужно делать до 2666 МГц, то возможно потребуется изменить ODT, но это не точно.

— Не забываем делать перезагрузку перед следующим этапом!

3) Зафиксировать тайминги автоматически установленные.

— Мы сделали откат на более низкую частоту, в нашем случае 2666 МГц, теперь самое время записать/сфотографировать все тайминги, получившиеся на данной частоте.

— Устанавливаем все тайминги в биосе, кроме tRFC и таймингов без значения или со значением 0.

— И еще раз: tRFC и тайминги «без значения» / «установленные в 0» НЕ трогать на данном этапе! Это важно!

— Не забываем делать перезагрузку перед следующим этапом!

4) Поднять частоту ОЗУ обратно вверх.

— Мы установили все тайминги кроме tRFC и «без значения», теперь нам осталось только найти максимальную частоту, при которой все это дело будет работать.

Первый этап нам сейчас экономит очень много времени, т.к. мы уже знаем максимальную частоту, выше которой не прыгнуть.

5) Ужимаем тайминги.

— Проверяем стабильность, по желанию ужимаем tRFC и тайминги уже вручную, для достижения более хороших результатов.

С теорией пожалуй разобрались, теперь начнем практику.

В качестве подопытного будет участвовать система:

CPU: AMD Ryzen 3 1200 @ 3849 MHz, 1.38v
Cooler: Кастомный на основе Titan TTC-NK34TZ/RF(BX), наполовину пассивный режим работы.
RAM: 2 x Samsung M378A1G43TB1-CTD
MB: MSI B450-A Pro Max (MS-7B86)

Дата выпуска модулей памяти: Неделя 47 / 2018 и Неделя 12 / 2019 (покупались в разное время)
Маркировка чипов памяти: SEC 910 K4A4G085WT BCTD

Подробная информация о модулях памяти Samsung M378A1G43TB1-CTD

С информацией о модулях памяти и системе закончили, теперь поэтапный разгон на практике.
Внимание: т.к. я уже знаю максимальную стабильную частоту ОЗУ при заниженных таймингах, я не буду показывать максимальные частоты, на которых память нестабильно запускалась и работала.
Так же я не буду объяснять про настройку ODT и RTT, т.к. это не входит в рамки данной статьи, но для полноты картины я покажу конкретные значения на фото, конкретно для моей системы, с которыми все работает нормально у меня.

1 Этап:

— Мы нашли максимальную рабочую частоту стабильную, установили ODT для этой частоты, так же установили напряжения подходящие

— Для экономии времени сохраним в профиль разгона параметры, чтобы в случае последующих неудач сэкономить много времени, просто восстановив из профиля настройки.

— Проверяем, что все работает нормально

2 Этап:

— Делаем откат частоты, в моем случае 2866 МГц.

— Все настроенные параметры напряжений и ODT / RTT трогать не надо

3-4 Этап:

— Фиксируем тайминги, которые система автоматически установила для частоты 2866 МГц.

— tRFC и тайминги «без значения» не трогаем!

— Поднимаем частоту вверх, т.к. я уже знаю предел рабочий, я могу поднять частоту сразу до 3333 МГц используя тайминги от 2866 МГц.

— Проверяем стабильность, и если все нормально, то повышаем частоту выше.

— В моем случае разница частоты получается 466 МГц при неизменных таймингах.

— В любом другом случае разница частоты может оказаться другой, в зависимости от возможностей модулей памяти, системной платы и процессора, это нужно проверять индивидуально.

5 Этап:

— Поджимаем первичные тайминги, tRFC и, если позволяют модули памяти, можно поджать субтайминги (модули с двухслойными чипами памяти обычно не позволяют просто так это сделать)

— Проверяем стабильность и, если все нормально, то жмем дальше, либо правим параметры для достижения стабильности.

На этом разгон успешно завершен, никакие калькуляторы использовать не пришлось, и расчеты производить тоже необязательно, потому что мы работаем с параметрами, которые система подготовила сама.

Теперь перейдем к сводке результатов, которые во время разгона были собраны:

Итого мы получаем:

Разница частоты на автоматических таймингах между 2866 МГц и 3333 МГц достигает 16.3%, в то время как пропускная способность по данным AIDA64 поднимается всего лишь на

6%, не густо как-то.

Но картина полностью меняется, если зафиксировать тайминги на частоте 2866 МГц и поднять частоту до уровня 3333 МГц, в таком случае разница пропускной способности между 2866 АВТО и 3333 с таймингами от 2866 достигает уже

Еще больше разница выходит после ручного «дожима» таймингов на последнем этапе, уже целых

17% разница по отношению к 2866 МГц! И это при разнице частоты в

Преимущества данного метода разгона:

1) Не требуется калькулятор с формулами под рукой для расчета таймингов.

2) Отличные результаты, по сравнению с автоматической установкой таймингов контроллером памяти на высоких частотах.

3) Вероятность ошибки минимальна — мы просто используем то, что система сама настроила стабильно.

4) Не нужно прибегать к помощи программ-калькуляторов, которые, как правило, бесполезны во многих случаях и тратят очень много времени, заставляя перебирать скорее всего нерабочие параметры, которые могут не подходить в конкретном случае.

5) Метод работает всегда, разве что требует внимательности, чтобы не допустить ошибку на одном из этапов разгона.

А теперь немного полезной информации:

— ODT для двухранговой памяти обычно выше чем для одноранговой, в моем случае двухранговая память и рабочие значения у меня 60-68.6 Ом, в вашем случае могут быть другие значения в зависимости от системной платы, от модулей ОЗУ, от процессора.
Например, на Gigabyte B450 Aorus M рабочее значение ODT подходило к 50 Ом с этой же памятью. Поэтому не пытайтесь копировать значения ODT и RTT, оно индивидуально в каждом конкретном случае! И на данный момент я не могу ничего посоветовать универсального с настройкой данных параметров.

— Температура: модули памяти могут давать ошибки при сильном нагреве, именно поэтому у меня стоит над видеокартой 12см куллер, он одновременно сгоняет нагретый воздух с зоны врм, и подгоняет воздух к модулям памяти для охлаждения, так же он в радиатор процессора подгоняет дополнительно воздух.
По факту тройная польза от одного косо-установленного вентилятора на низких оборотах, не говоря уже о том, что он дополнительно обдувает текстолит видеокарты.

— Чистота и порядок: Иногда мешать разгону могут окисления на контактах ОЗУ, решение проблемы кроется в старом добром ластике.

Одноранговая и двухранговые память. Если ли разница?

Привет всем. Купил такую сборку —

Видюха palit gamerock 1080 8gb.

Уже после того как купил, заметил что оперативка одноранговая. Брал по принципу «бери самая дешевая, там ваще пофиг»

А щас полез копаться, оказалось что она одноранговая. Как я понял, для игр они ведь хуже примерно на 5-10% чем двухранговые, да?

Сильн критично это? А если ее хорошо разогнать? Это же вроде преимущество у одноранговых — разгон.

Изменить уже ничего нельзя, поэтому как мне компенсировать мой косяк?)

Одно и двухранговые ОЗУ
Доброго времени суток! :drink: Небольшой такой вопрос к вам, уважаемые знатоки/эксперты.

Есть ли разница,в какой разьем подключать память?
Представим ситуацию;материнка поддерживает 2 канальную память(DDR3).На процессоре стоит.

Упаковка и память. Разница скорости работы классов и структур
Если Int32 это структура и создается в стеке (никаких упаковок-распаковок), то почему тут на форуме.

Наследование: выделение память 2 способами — какая между ними разница
Доброй ночи! Целый год все было нормально, а этой ночью что-то случилось с моей головой. Я в.

Короче. 1 ранк — это когда на плате оперативки набрано столько чипов и такой битности, чтобы вместе составлять 64 бита. Например, если взять 8 512-мегабайтных чипов с 8-битной организацией — получим 64 бита, т.е. — один ранк. А размер этой оперативки получится 4 гига. Вот. Но на одной планке оперативки может быть распаяно 2 ранка, т.е. 16 таких чипов, каждый из таких ранков будет пользовать предоставленный канал как бы по очереди, как будто на одной планке оперативки распаять две реальные планки. Обычно это бывает распаяно на 2 стороны планки, поэтому многие как-то привыкли путать ранк и сторону, но вот ни фига это не верно, вот что. Бывает, что на 2-х сторонах распаян один ранк, а бывает что на одной стороне распаяны 2 ранка.

Короче, kraper111, мой вам совет. погоните память до 3000, или хотя бы до 2666 — и будет вам счастье.
И не выдумывайте себе проблем.

Короче. 1 ранк — это когда на плате оперативки набрано столько чипов и такой битности, чтобы вместе составлять 64 бита. Например, если взять 8 512-мегабайтных чипов с 8-битной организацией — получим 64 бита, т.е. — один ранк. А размер этой оперативки получится 4 гига. Вот. Но на одной планке оперативки может быть распаяно 2 ранка, т.е. 16 таких чипов, каждый из таких ранков будет пользовать предоставленный канал как бы по очереди, как будто на одной планке оперативки распаять две реальные планки. Обычно это бывает распаяно на 2 стороны планки, поэтому многие как-то привыкли путать ранк и сторону, но вот ни фига это не верно, вот что. Бывает, что на 2-х сторонах распаян один ранк, а бывает что на одной стороне распаяны 2 ранка.

Короче, kraper111, мой вам совет. погоните память до 3000, или хотя бы до 2666 — и будет вам счастье.
И не выдумывайте себе проблем.

Наконец-то нашёл адекватное объяснение одно- и двух рядных типов плат памяти. Везде пишут какой-то бред про две стороны, хотя только слепой не видит, что на обеих видах плат чипы с одной стороны. Где с двух сторон, мне не попадалось. Очевидно же, что речь идёт не о сторонах платы, а о принципе организации работы чипов.

А работоспособна ли система с двумя различными в этом плане платами памяти?

Решение

..вполне.
ранки памяти только расширяют адресный диапазон и всё.

не совсем так. по-очереди шиной пользуются только каналы памяти, но не ранки.
Внутри одного модуля, 64-битная шина-данных одна и по ранкам она разводится параллельно.

Контроллёр памяти соединяется с процем одной 64-битной шиной, но если этот контроллёр двуканальный, то от контроллёра к памяти, шина становится уже 128-битной — т.е. каждому каналу по 64-битной шине. Вот здесь-то они и чередуются..

В свою очередь, на каждый канал можно повесить только 16-чипов памяти! Это ограничение связано с разрядностью сигнала «ChipSelect» CS#[3:0], 4-мя битами которого можно адресовать только 16 м/схем памяти. У 1-ранковых модулей бит(3) будет всегда сброшен в нуль, а оставшимися 3-мя адресуются 8-чипов ‘SingleRank’ модуля. Чтобы увеличить общее кол-во чипов, нужно добавлять ещё контроллёры памяти.

Вот скрин из интеловского даташина MCH..
(SDQ[63:0] = шина-данных, SCS[3:0] = выбор одного из 16-ти чипов модуля):

А вот столбцы в глобальной матрице адресуются иначе.. Их нумерация так-же совпадает для всех чипов, но зато сам чип выбирается уже 4-битным сигналом(CS#). После выбора одного из 8-ми чипов, нумерация его столбцов опять начинается с нуля — детали здесь.

Организация ‘DualRank’ модулей ничем не отличается от ‘Single’ — разница только в четвёртом бите(3) сигнала(CS#), который позволяет выбрать уже следующие чипы 8-15 модуля памяти, расширяя таким образом доступную память. При этом шины-данных чипов 0/8, 1/9, 2/10 и т.д. соединяются между собой параллельно — это не создаёт неразберихи, т.к. в каждый момент времени операции R/W производятся только с одним из чипов, который активируется текущим сигналом(CS#) с контроллёра памяти.

В двуканальном режиме выигрыш в скорости достигается за счёт того, что контроллёр памяти может не дожидаясь окончания операции с одним каналом, начинать работать со-вторым, поскольку у него своя шина-данных (см.рис.выше). В одноканальном режиме приходится ждать окончания начатой транзакации, на что теряется время. Как-то так..

В памяти есть такое понятие, как «активное окно». Я не знаю, чьё конкретно это свойство — свойство отдельной микросхемы памяти, или свойство отдельного ранка. Но в любом случае две ранка памяти позволяют иметь в два раза больше активных окон. Соотвестственно, среднестатистически иметь чуть меньше ситуаций переключения активного окна, соответственно, тратить чуть меньше времени. Насчёт пары процентов сомневаюсь, по ощущениям эффект должен быть намного меньше

На моей памяти проводил эксперимент, когда две планки памяти ставил в один канал. На синтетическом тесте работало немного быстрее, чем вариант, когда установлена всего лишь одна планка. Причина по сути та же самая

Решение

4ori4or, это смотря в каком режиме проц читает память.
Раньше (DDR/DDR2) этих режимов было хоть-отбавляй, а сейчас оставили только два — пакетный и страничный, когда читается сразу вся/открытая страница.

Помимо запоминающей матрицы, каждый из 8-ми чипов имеет и свой/логический узел, который: защёлкивает принятый адрес, выделяет из него номер банка, переключает буферы на R/W и прочее. Если посмотреть на даташит, то чип состоит из 4-х узлов: логика, матрица, буфер и шинный-драйвер.

Когда 8-чипов собирают в ранк, то узлы всех чипов получаются соединёнными параллельно, превращаясь в: глобальную матрицу, один/большой буфер и мега-драйвер внешней шины. Соединяются все узлы, ..кроме логики, т.к. столбец выбирается отдельно и при пакетном чтении должен на автопилоте сдвигаться вправо.

Контроллёр первым посылает адрес-строки, но поскольку она глобальна, то указанная строка открывается сразу во-всех чипах глобальной матрицы. В это время, буквально все байты открытой строки сваливаются в глобальный буфер «SenseAMP», и по-приходу строба RAS# логика защёлкивает у себя принятый адрес-строки. В зависимости от типа применяемых чипов, размер буфера варьируется в диапазоне 4-8Kb, что соответствует одной странице виртуальной памяти.

Содержимое SenseAMP назвали «Активной страницей», т.к. именно с этого момента память становится доступной для чтения. В зависимости от режима работы контроллёра, он может взять с этой страницы: 1,2,4,8-байтов за-раз, 64-байтный пакет, или вообще всю страницу целиком (страничный обмен). Процедура чтения начинается с сигнала CAS#, который контроллёр посылается логике ранка. Причём стартовый байт выбирается уже не из глобальной матрицы, а из буфера, ..от куда данные передаются к шинному драйверу и на выход.

В свою очередь, линий передачи от буфа к дрову тоже может быть несколько: у DDR их две, для DDR2 их уже 4, DDR3 наградили аж 8-ми линиями передачи, а DDR4 вообще 16. По сути этим и отличаются поколения памяти — линиями передачи, которые задаёт 2 n -prefetch (где n — тип памяти, например DDR3 = 2 3 = 8 линий). Там есть мультиплексор на соответствующее число входов от буфера, и 1 выход к драйверу. Только теперь в игру вступает понятие DDR как-таковое — передача по обоим фронтам синхроимпульса по внешней шине.
——————————————

На первый взгляд всё хорошо — данных в буфере много (вся/активная страница). Только есть проблемка! Данные не могут храниться в буфере вечно, и их нужно перезаряжать, что известно как регенерация. Поэтому по-истечению определённого времени (см.тайминги) логика открывает защёлки и все байтики из буфера отправляются прямиком опять в глобальную матрицу, по-своим местам. Соответственно процессор будет вынужден ждать весь цикл по-новой. И это не проблема, если читается страница целиком с последовательными адресами. А если нужно читать адреса вразброс (условные/безусловные переходы в коде)?

Для таких случаев, лучше держать открытыми сразу несколько открытых страниц, для определения которых процессор имеет «Блок предсказания переходов» и предвыборку. Сейчас 4-линии CS#[0:3] на одном канале используются уже по-иному — каждая из них может активировать 1-ранк. Например, если модуль 2-ранковый, то ему выделяются линии контроллёра CS#[0:1]. На одном канале сейчас не может быть больше двух слотов памяти, с расчётом на DualRank. У второго канала свои линии CS#[0:3] и это точная ксерокопия первого.

Таким образом 1-канальный контроллёр может держать открытыми сразу 4 DRAM-страницы, и чередовать их по-требованию, что снижает холостые такты на «RAS-to-CAS-Latency». Стало проще — с одной страницы читаем, другую регенерируем, переключились на третью, и т.п. Но чего нельзя на одном канале, так-это читать сразу из двух ранков, хоть страницы в них и открыты. Выигрыш достигается только за счёт уменьшения задержек на открытие DRAM-страниц.

А вот 2-канальный контроллёр может без проблем читать параллельно, но только каждый свои ранки. Они полностью абстрагированы друг-от-друга, со-своими шинами и сигнальными линиями. Если имеется симметрия глобальной матрицы двух каналов, то за-такт читается сразу 128-бит данных. В сети можно встретить утверждения, что мол сейчас и в асимметричном режиме это стало возможным. Могу возразить, что это не так.

В 2-канальной асимметрии проц будет читать сразу по 128-бит, но только из промежуточного буфера контроллёра. То-есть по 128 он берёт в любом случае, но в первом (при равномерном распределении и одинаковой памяти), промежуточный буфер отключается.

Как выбрать, разогнать и настроить оперативную память DDR4

Предыдущая версия данного материала слегка устарела в связи с выходом процессоров AMD Ryzen и прочим новым счастьем. Переходим сразу к делу. Вы хотите купить оперативную память, или уже купили, но хотите настроить, или уже настроили, но хотите разогнать. Мы расскажем поочерёдно о каждом пункте, связанном с оперативкой, от выбора производителя до разгона. Итак, начинаем!

Объём

Тут понятно, чем он больше, тем лучше. Если вы на 64-битной системе, то потолок объёма вам вряд ли будет достижим, а вот 32-битные системы упрутся в 4 ГБ.

Тип памяти

DDR3, DDR4 и так далее. Чем новее система, тем больше вероятность, что память потребуется DDR4 – пятая версия ещё не представлена официально, а третья уже устарела.

Производитель

Не шибко важен. Все эти известные имена, вроде Kingston, G.Skill и прочие, являются не более чем сборщиками плашек из готовых компонентов. И несмотря на то, что качество сборки важно, оно почти всегда стандартизировано, и значение имеют лишь отдельные компоненты, вроде чипов памяти от Micron или Hynix.

Коррекция ошибок, или ECC

Не нужна обычному потребителю, разве что вы собираете собственный сервер. Это память с коррекцией ошибок, которая увеличивает надёжность системы.

Охлаждение

Чем лучше и быстрее оперативка, тем больше тепла она выделяет во время работы. Самая крутая оперативка поставляется со специальными корпусами-радиаторами, рассеивающими тепло, и выглядит круто. Плашки памяти без радиаторов обычно стоят дешевле при схожей производительности и не такие высокие, а значит – не будут мешать установки большинства систем охлаждения на процессор.

Подсветка

Чисто визуальная составляющая, на FPS в играх не влияет. Если уж покупаете, то можно потратиться на ОЗУ с поддержкой ASUS Aura, и подсветку можно будет настроить в один мотив с остальными компонентами, которые поддерживают Aura. RGB-подсветка может светиться самыми разными цветами, а обычная, не RGB – только одним.

Казалось бы, подсветка должна негативно влиять на стоимость плашек, но, к примеру, в случае оперативной памяти GeIL EVO X DDR4 ROG Certified прибавка к цене минимальна. Тем более, что и качество исполнения самой памяти великолепно. Детали – здесь.

Частота и тайминги

Основной показатель скорости памяти. Чем выше частота памяти, тем лучше. Чем ниже тайминги, тем лучше. В большинстве случаев стоит обращать внимание на объём в первую очередь, но когда скорость памяти нужна, эти параметры реально важны, особенно если вы работаете с процессорами AMD Ryzen. Дело в том, что эти многоядерные процессоры состоят из двух модулей по несколько ядер, которые взаимодействуют между собой через шину под названием Infinity Fabric – а она тем эффективнее, чем быстрее у вас ОЗУ. Частота влияет в первую очередь, но это не единственный фактор.

Совместимость

Максимально важна для владельцев Ryzen, так как процессоры молодые, и совместимость у них не полная. Плашки оперативки, одобренные AMD, подойдут в такую систему лучше всего. Полный список совместимых моделей находится здесь. GeIL, кстати, выпускает новые плашки, которые полностью совместимы с Ryzen.

Двухканальный режим работы

Позволяет двум плашкам ОЗУ объединить две шины передачи данных в одну. Это заметно увеличивает производительность в некоторых задачах, особенно в работе встроенного в процессоры видеоядра. Чтобы получить двухканальный режим, нужно вставить обе плашки в определённый слот на материнской плате – обычно это слот через один, выделенный определённым цветом. В инструкции к материнке обычно этот момент указан. В серверных материнских платах и процессорах есть поддержка четырёхканального режима ОЗУ – принцип тот же. AMD многоканальный режим работы тоже любит по той же причине, что и частоты.

Ранговость памяти

Термин, сложный для понимания обычному юзеру. Если не вдаваться в дебри, то память может быть одноранговая, двухранговая и так далее. Чем ниже ранг, тем дешевле производство и легче разгон, чем выше ранг – тем выше базовая производительность. Опять же, шина Infinity Fabric очень любит многоранговую оперативку. Из названия некоторых моделей, кстати, довольно легко вычислить ранговость – у Kingston это обозначается буквой S/D/Q для одноранговой/двухранговой/четырёхранговой памяти соответственно. К примеру – KVR1333D3LS4R9S/4GEC, KVR1333D3LD4R9S/8GEC и KVR1333D3LQ8R9S/8GEC.

Комплекты ОЗУ

Многие производители продают в одной упаковке сразу два или даже четыре модуля, для повышенной совместимости и максимальной стабильности работы. Это не значит, что нельзя мешать производителей в одну кучу – можно ставить даже разные объёмы с разными параметрами, но они будут всегда работать на частоте минимального модуля, и стабильность такой сборки порой неудовлетворительная, не только в разгоне, но даже для запуска и в обычной работе.

Установка ОЗУ

Простая, но с хитростями. Перепутать её сторонами не получится – ширина коннекторов несимметричная, но вставляется она очень часто туго, особенно на новых материнских платах. И вставлять её нужно до упора, чтобы защелкнулись замки – иначе ПК вряд ли запустится.

Разгон ОЗУ

Осуществляется в основном через BIOS. Его можно настроить либо вручную, либо при помощи технологии Intel XMP, которая работает даже на материнских платах под AMD. Для более тонкого разгона можно увеличивать отдельно напряжение и частоту, а также уменьшать тайминги – каждый пункт даёт дополнительную нагрузку на модуль памяти. Но не переживайте, сжечь её вы вряд ли сможете – если вы перебрали с параметрами, то память просто не “заведётся” и компьютер перезагрузится, в крайнем случае выключится. У некоторых материнских плат, вроде MSI B350M Pro-VDH, есть поддержка таймера перезагрузок – если из-за новых параметров ОЗУ компьютер не запускается N раз, то профили автоматически сбрасываются в ноль.

Разгон ОЗУ также можно провернуть через программы вроде MSI Command Center, но я рекомендую использовать этот разгон только с проверенными значениями, поскольку в случае слишком завышенных компьютер может уйти в BSOD и вы всё равно начнёте с BIOS, потеряв несохранённые данные. Безусловно, если вы любите разгон, то BSOD – это ваш друг родной, без него никак, но всё-таки через BIOS будет надёжнее.

Некоторые плашки ОЗУ поддерживают так называемые eXtreme Memory Profile – это предзаготовленные высокопроизводительные профили, которые ну точно должны заработать. Таких профилей обычно несколько, с балансом между высокой частотой и низкими таймингами. Скажем, 2400 МГц и 11-13-14-32, а также 2133 МГц и 11-13-13-30. Первый профиль подойдёт для высокопроизводительных материнских плат, поддерживающих высокие частоты, а второй – для средних плат, на которых низкие тайминги выглядят выгоднее.

Если же вы все-таки намудрилис разгоном, и даже в BIOS зайти не можете, выключите компьютер из сети, вытяните шнур питания (это важно) и очистите память BIOS, либо вытянув батарейку, либо закоротив контакты CMOS (они же JBAT1 на MSI B350M Pro-VDH) секунд на 5-10. Где находится CMOS – смотрите в инструкциях к материнским платам или в Интернете.

В общем – всё. Если вы боитесь поломать что-либо, используйте либо предзаготовленные настройки частот из BIOS, либо профили XMP. Современные компьютерные комплектующие не дадут вам сжечь память, разве что они сами бракованные, но тогда чем быстрее вы об этом узнаете, тем лучше.

Источник: softaltair.ru

Добавить комментарий